Differientiable Sampling and Argmax
WIP, last updated: 2019.12.6
Last updated
WIP, last updated: 2019.12.6
Last updated
Softmax is a commonly used function for turning an unnormalized log probability into a normalized probability (or categorical distribution).
Say is the output of a neural network before softmax, we call the unnormalized log probability.
After softmax, we usually sample from this categorical distribution, or taking an argmax function to select the index. However, one can notice that neither the sampling nor the argmax is differientiable.
Researchers have proposed several works to make this possible. I am going to discuss them here.
I will introduce Gumbel Softmax [1611.01144], which have made the sampling procedure differentiable.
First, we need to introduce Gumbel Max. In short, Gumbel Max is a trick to use gumbel distribution to sample a categorical distribution.
Say we want to sample from a categorical distribution . The usual way of doing this is using to separate into intervals, sampling from a uniform distribution , and see where it locates.
The Gumbel Max trick provides an alternative way of doing this. It use Reparameterization Trick to avoid the stochastic node during backpropagation.
which is exactly a softmax probablity. QED.
Reference: https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/****
Notice that there is still an argmax in Gumbel Max, which still makes it indifferentiable. Therefore, we use a softmax function to approximate this argmax procedure.
We note that the output of Gumbel Softmax function here is a vector which sum to 1, which somewhat looks like a one-hot vector (but it's not). So by far, this does not actually replace the argmax function.
To actually get a pure one-hot vector, we need to use a Straight-Through (ST) Gumbel Trick. Let's directly see an implementation of Gumbel Softmax in PyTorch (We use the hard mode, soft mode does not get a pure one-hot vector).
When fowarding, the code use an argmax to get an actual one-hot vector.
And it uses ret = y_hard - y_soft.detach() + y_soft
, y_hard
has no grad, and by minusing y_soft.detach()
and adding y_soft
, it achieves a grad from y_soft
without modifying the forwarding value.
So eventually, we are able to get a pure one-hot vector in forward pass, and a grad when back propagating, which makes the sampling procedure differientiable.
from Eric Jang. https://blog.evjang.com/2016/11/tutorial-categorical-variational.html
How to make argmax differentiable?
Intuitively, the Straight-Through Trick is also applicable for softmax+argmax (or softargmax + argmax). I am still not sure, needs more digging in the literature.
Some have introduced the soft-argmax function. It doesn't actually makes it differentiable, but use a continuous function to approximate the softmax+argmax procedure.
Goal
softmax + argmax is used for classification, we only want the index with the highest probability.
gumbel softmax + argmax is used for sampling, we may want to sample an index not with the highest probability.
Deterministic
softmax + argmax is deterministic. Get the index with the highest probablity.
gumbel softmax + argmax is stochastic. We need to sample from a gumbel distribution in the beginning.
Output vector
softmax and gumbel softmax aboth output a vector sum to 1.
softmax outputs a normalized probability distribution.
Straight-Through Trick can actually be applied to both softmax + argmax and gumbel softmax + argmax, which can make both of them differentiable. (?)
Gumbel Softmax [1611.01144]
Concrete Distribution (Gumbel Softmax Distribution) [1611.00712]
Eric Jang official blog: https://blog.evjang.com/2016/11/tutorial-categorical-variational.html
PyTorch Implementation of Gumbel Softmax: https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.gumbel_softmax
where , which can be sampled by . We can prove that is distributed according to .
, where which can be sampled by is distributed with
Gumbel Distribution (param by location ****, and scale ) (wikipedia) CDF: PDF: Mean: is the Euler–Mascheroni constant. Quantile Function: (Quantile Function is used to sample random variables from a distribution given CDF, it is also called inverse CDF)
We actually want to prove that is distributed with .
We can find that has the following PDF and CDF
.Then, the probability that all other are less than is:
We know the marginal distribution over and we are able to integrate it out to find the overall probability: ()
where is a temparature hyperparameter.
Finally, let's look at how affects the sampling procedure. The below image shows the sampling distribution (which is also called the Concrete Distribution [1611.00712]) and one random sample instance when using different hyperparameter .
when , the softmax becomes an argmax and the Gumbel-Softmax distribution becomes the categorical distribution. During training, we let to allow gradients past the sample, then gradually anneal the temperature (but not completely to 0, as the gradients would blow up).
where can be a large value to make very much "look like" a one-hot vector.
gumbel softmax outputs a sample somewhat more similar to a one-hot vector.(can be controlled by )