Traditionals
some traditional machine learning algorithms
- Linear Regression
- Logistic Regression
- Naive Bayes
- Support Vector Machine (SVM)
- Training process: Lagrange -> Dual Problem -> SMO
- K Nearest Neighbor (kNN)
- Expectation-Maximization (EM)
- Linear Discrimant Analysis (LDA)
- Decision Tree
- Random Forest
- Gradient Boosting Tree (GBDT)
- Clustering
- K-means
- Mean-shift
- DBSCAN
- Principal Component Analysis (PCA)
- Latent Dirichlet allocation (LDA) Topic Modeling
- K-Fold Cross Validation
- Bagging
- Boosting
Text | True Samples | False Samples |
---|---|---|
Predict True | True Positive | False Positive [Type I Error] |
Predict False | False Negative [Type II Error] | True Negative |
- Precision and Recall
-
-
- F1 Score
-
- Receiver Operating Characteristic (ROC)
-
-
- Area Under ROC (AUC)
- Confusion Matrix
Last modified 1yr ago