Links

Traditionals

some traditional machine learning algorithms

Survey Papers / Repos

Resources

Tasks

Supervised

  • Linear Regression
y=ax+bL(y,y^)=(yy^)2y=ax+b\\ L(y,\hat{y}) = (y-\hat{y})^2
  • Logistic Regression
y=11+e(ax+b)L(y,y^)=y^logy(1y^)log(1y)y=\frac{1}{1+e^{-(ax+b)}} \\ L(y,\hat{y}) = -\hat{y}\log y - (1 - \hat{y}) \log (1-y)
  • Naive Bayes
P(AB)=P(BA)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}
  • Support Vector Machine (SVM)
    • Training process: Lagrange -> Dual Problem -> SMO
    min12w2s.t. y(i)(wTx(i)+b)1,i=1,...,m\min \frac{1}{2} ||w||^2 \\ \text{s.t.}~y^{(i)}(w^{T}x^{(i)}+b) \geq 1, i=1,...,m
  • K Nearest Neighbor (kNN)
  • Expectation-Maximization (EM)
  • Linear Discrimant Analysis (LDA)
  • Decision Tree
  • Random Forest
  • Gradient Boosting Tree (GBDT)

Semi-supervised

Weakly-supervised

Unsupervised

  • Clustering
    • K-means
    • Mean-shift
    • DBSCAN
  • Principal Component Analysis (PCA)
  • Latent Dirichlet allocation (LDA) Topic Modeling

Others

Ensemble

  • K-Fold Cross Validation
  • Bagging
  • Boosting

Metrics

Text
True Samples
False Samples
Predict True
True Positive
False Positive [Type I Error]
Predict False
False Negative [Type II Error]
True Negative
  • Precision and Recall
    • Precision=TPTP+FP\text{Precision} = \frac{\text{TP}}{\text{TP} +\text{FP}}
    • Recall=TPTP+FN\text{Recall} = \frac{\text{TP}}{\text{TP}+\text{FN}}
  • F1 Score
    • F1 score=2PrecisionRecallPrecision+Recall\text{F1 score} = 2 \cdot\frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} +\text{Recall}}
  • Receiver Operating Characteristic (ROC)
    • TPR=TPTP+FN\text{TPR} = \frac{\text{TP}}{\text{TP}+\text{FN}}
    • FPR=FPFP+TN\text{FPR} = \frac{\text{FP}}{\text{FP}+\text{TN}}
  • Area Under ROC (AUC)
  • Confusion Matrix

Reference